Fatigue Performance of Metal–Composite Friction Spot Joints
Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum...
Saved in:
Published in: | Materials Vol. 14; no. 16; p. 4516 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
11-08-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models—exponential, power law, and wear-out—were used to statistically analyze the fatigue life of the joints and to draw the stress–life (S–N) curves. The joints showed an infinite life of 25–35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma14164516 |