Eimeria tenella: Identification of secretory and surface proteins from expressed sequence tags
To identify new vaccine candidates, Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx sea...
Saved in:
Published in: | Experimental parasitology Vol. 111; no. 1; pp. 14 - 23 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
San Diego, CA
Elsevier Inc
01-09-2005
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To identify new vaccine candidates,
Eimeria tenella expressed sequence tags (ESTs) from public databases were analysed for secretory molecules with an especially developed automated in silico strategy termed DNAsignalP. A total of 12,187 ESTs were clustered into 2881 contigs followed by a blastx search, which resulted in a significant number of
E. tenella contigs with homologies to entries in public databases. Amino acid sequences of appropriate homologous proteins were analysed for the occurrence of an N-terminal signal sequence using the algorithm signalP. The resulting list of 84 entries comprised 51 contigs whose deduced proteins showed homologies to proteins of apicomplexan parasites. Based on function or localisation, we selected candidate proteins classified as (i) secreted proteins of Apicomplexa parasites, (ii) secreted enzymes, and (iii) transport and signalling proteins. To verify our strategy experimentally, we used a functional complementation system in yeast. For five selected candidate proteins we found that these were indeed secreted. Our approach thus represents an efficient method to identify secretory and surface proteins out of EST databases. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0014-4894 1090-2449 |
DOI: | 10.1016/j.exppara.2005.04.005 |