Oxford nanopore sequencing enables rapid discovery of single-domain antibodies from phage display libraries

Antibody (Ab) repertoire sequencing using high-throughput massively parallel technologies has contributed substantially to the understanding of Ab responses following infection, vaccination and autoimmunity. Because individual B-cell receptors are recombined and diversified somatically, genomic comp...

Full description

Saved in:
Bibliographic Details
Published in:BioTechniques Vol. 65; no. 6; pp. 351 - 356
Main Authors: Lowden, Michael J, Henry, Kevin A
Format: Journal Article
Language:English
Published: England Future Science Ltd 01-12-2018
Taylor & Francis Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Antibody (Ab) repertoire sequencing using high-throughput massively parallel technologies has contributed substantially to the understanding of Ab responses following infection, vaccination and autoimmunity. Because individual B-cell receptors are recombined and diversified somatically, genomic comparisons are limited, and distinguishing rare variants from sequencing errors is a major challenge. Oxford Nanopore Technologies' MinION is a highly portable and cost-effective third-generation sequencing instrument, but has not been used for Ab repertoire sequencing due to its high error rate (approximately 1/10 bases). Here, we applied nanopore sequencing to single-domain Ab (sdAb) repertoires and phage-displayed sdAb libraries. We show that despite low overall data fidelity, sdAb sequences could be reconstructed above a frequency threshold (∼100 copies); however, distinguishing clonal sdAb variants was not always possible. The data quality was sufficient to enable rapid identification of antigen-specific sdAb sequences enriched during panning of phage display libraries, obviating the need for screening single clones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0736-6205
1940-9818
DOI:10.2144/btn-2018-0123