Characterization of a sandwich ELISA for quantification of total human soluble neuropilin‐1
Background Neuropilin‐1 (NRP1) is a highly interactive molecule that exists as transmembrane and soluble isoforms. Measurement of circulating levels of soluble NRP1 (sNRP1) in human serum and plasma has proven to be difficult due to present matrix interferences and due to the lack of a reliable tech...
Saved in:
Published in: | Journal of clinical laboratory analysis Vol. 33; no. 7; pp. e22944 - n/a |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
John Wiley & Sons, Inc
01-09-2019
John Wiley and Sons Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Neuropilin‐1 (NRP1) is a highly interactive molecule that exists as transmembrane and soluble isoforms. Measurement of circulating levels of soluble NRP1 (sNRP1) in human serum and plasma has proven to be difficult due to present matrix interferences and due to the lack of a reliable technique.
Methods
We developed a highly specific and sensitive sandwich ELISA assay for total sNRP1 quantification in peripheral blood, and we validated the test according to ICH guidelines. The linear epitopes of the employed polyclonal and monoclonal anti‐human NRP1 antibodies were mapped with microarray technology. We included a sample pre‐treatment step with guanidine hydrochloride (GuHCl) to release sNRP1 from existing interferants.
Results
The ELISA assay which is calibrated with sNRP1 isoform 2 and covers a calibration range from 0.375 to 12 nmol/L detects sNRP1 in human serum and plasma (heparin, EDTA, and citrate). Multiple linear epitopes recognized by the polyclonal coating antibody are distributed over the whole sNRP1 sequence. The monoclonal detection antibody binds to a linear epitope which is in the N‐terminal region of the a1 domain of human sNRP1. Assay parameters like precision (intra‐assay: 6%), dilution linearity (95%‐115%), specificity (98%), and spike recovery (81%‐109%) meet the international standards of acceptance.
Conclusion
Our novel sandwich ELISA provides a reliable tool for the quantitative determination of total human sNRP1. The assay detects free and previous ligand‐bound total NRP1. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0887-8013 1098-2825 |
DOI: | 10.1002/jcla.22944 |