Characterization of a sandwich ELISA for quantification of total human soluble neuropilin‐1

Background Neuropilin‐1 (NRP1) is a highly interactive molecule that exists as transmembrane and soluble isoforms. Measurement of circulating levels of soluble NRP1 (sNRP1) in human serum and plasma has proven to be difficult due to present matrix interferences and due to the lack of a reliable tech...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical laboratory analysis Vol. 33; no. 7; pp. e22944 - n/a
Main Authors: Gadermaier, Elisabeth, Tesarz, Manfred, Wallwitz, Jacqueline, Berg, Gabriela, Himmler, Gottfried
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 01-09-2019
John Wiley and Sons Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Neuropilin‐1 (NRP1) is a highly interactive molecule that exists as transmembrane and soluble isoforms. Measurement of circulating levels of soluble NRP1 (sNRP1) in human serum and plasma has proven to be difficult due to present matrix interferences and due to the lack of a reliable technique. Methods We developed a highly specific and sensitive sandwich ELISA assay for total sNRP1 quantification in peripheral blood, and we validated the test according to ICH guidelines. The linear epitopes of the employed polyclonal and monoclonal anti‐human NRP1 antibodies were mapped with microarray technology. We included a sample pre‐treatment step with guanidine hydrochloride (GuHCl) to release sNRP1 from existing interferants. Results The ELISA assay which is calibrated with sNRP1 isoform 2 and covers a calibration range from 0.375 to 12 nmol/L detects sNRP1 in human serum and plasma (heparin, EDTA, and citrate). Multiple linear epitopes recognized by the polyclonal coating antibody are distributed over the whole sNRP1 sequence. The monoclonal detection antibody binds to a linear epitope which is in the N‐terminal region of the a1 domain of human sNRP1. Assay parameters like precision (intra‐assay: 6%), dilution linearity (95%‐115%), specificity (98%), and spike recovery (81%‐109%) meet the international standards of acceptance. Conclusion Our novel sandwich ELISA provides a reliable tool for the quantitative determination of total human sNRP1. The assay detects free and previous ligand‐bound total NRP1.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0887-8013
1098-2825
DOI:10.1002/jcla.22944