The core-periphery model with three regions and more
We determine the properties of the core‐periphery model with three regions and compare our results with those of the standard 2‐region model. The conditions for the stability of dispersion and concentration are established. As in the 2‐region model, dispersion and concentration can be simultaneously...
Saved in:
Published in: | Papers in regional science Vol. 91; no. 2; pp. 401 - 418 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-06-2012
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We determine the properties of the core‐periphery model with three regions and compare our results with those of the standard 2‐region model. The conditions for the stability of dispersion and concentration are established. As in the 2‐region model, dispersion and concentration can be simultaneously stable. We show that the 3‐region (2‐region) model favours the concentration (dispersion) of economic activity. Furthermore, we provide some results for the n‐region model. We show that the stability of concentration of the 2‐region model implies that of any model with an even number of regions.
Determinamos las propiedades de un modelo núcleo‐periferia de tres regiones y comparamos nuestros resultados con los del modelo estándar de dos regiones. Se establecen las condiciones para la estabilidad de la dispersión y la concentración. Al igual que en el modelo de dos regiones, la dispersión y la concentración pueden ser estables simultáneamente. Mostramos que el modelo de tres regiones (dos regiones) favorece la concentración (dispersión) de la actividad económica. Además, aportamos algunos resultados para un modelo n‐regional. Mostramos que la estabilidad de la concentración del modelo bi‐regional implica eso mismo de cualquier modelo con un número par de regiones. |
---|---|
Bibliography: | The authors acknowledge support from the Ramón y Cajal programme at the Universidad de Alicante, FCT and FEDER (research grant PTDC/EGE-ECO/108331/2008). Sofia Castro also acknowledges support from Centro de Matemática da Universidade do Porto (CMUP) and Fundação para a Ciência e Tecnologia, through the programmes POCTI and POSI. João Correia-da-Silva also acknowledges support from CEF.UP. Sofia Castro and Pascal Mossay wish to thank Martin Golubitsky for introducing them to each other. istex:2C3AD0947B3247DAE513C4734C297F0F67CD9A02 ArticleID:PIRS381 ark:/67375/WNG-5Q39Q82R-L The authors acknowledge support from the Ramón y Cajal programme at the Universidad de Alicante, FCT and FEDER (research grant PTDC/EGE‐ECO/108331/2008). Sofia Castro also acknowledges support from Centro de Matemática da Universidade do Porto (CMUP) and Fundação para a Ciência e Tecnologia, through the programmes POCTI and POSI. João Correia‐da‐Silva also acknowledges support from CEF.UP. Sofia Castro and Pascal Mossay wish to thank Martin Golubitsky for introducing them to each other. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1056-8190 1435-5957 |
DOI: | 10.1111/j.1435-5957.2011.00381.x |