Experimental study of impact mechanical and microstructural properties of modified carbon fiber reinforced concrete

This paper investigated the preparation method and the dispersion behaviour of Modified Carbon Nanotube-fiber Reinforcements (MCNF), the change laws and the effect mechanisms of dynamic compressive strength of MCNF concretes. Electrophoresis method was used to prepare MCNF and its interfacial shear...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; p. 12928
Main Authors: Du, Yuhang, Lu, Song, Xu, Jinyu, Xia, Wei, Wang, Tengjiao, Wang, Zhihang
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 28-07-2022
Nature Publishing Group
Nature Portfolio
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigated the preparation method and the dispersion behaviour of Modified Carbon Nanotube-fiber Reinforcements (MCNF), the change laws and the effect mechanisms of dynamic compressive strength of MCNF concretes. Electrophoresis method was used to prepare MCNF and its interfacial shear performance was tested by interfacial shear strength (IFSS) test. In addition, the dispersion behavior of MCNF in simulated concrete solution was verified by turbidity method. Split Hopkinson Pressure Bar (SHPB), Scanning Electron Microscope (SEM) and Mercury Intrusion Porosimetry (MIP) tests were carried on concrete samples with different volume fractions (0%, 0.1%, 0.2%, 0.3%, 0.4%) of MCNF. The results show that carbon nanotubes are easier to deposit to the negative electrode, and the higher the content of polycarboxylate superplasticizer, the more obvious the dispersity of MCNF in alkaline environment. The dynamic compressive strength of MCNF concrete was 14.0–35.5% higher than that of untreated concrete, and reached the maximum when the MCNF content was about 0.3%. The MCNF was wrapped in concrete matrix and promoted hydration reaction of interface between cement and MCNF from microscopic observation. The addition of MCNF could increase the porosity. The volume percentage of ≥ 100 nm pore decreased first and then increased. Reasons for the improvement strength of MCNF concrete is that the bridging effect is stronger with the increase of MCNF content (≤ 0.3%) and limited when the MCNF content is equal to 0.4%. MCNF concrete could be used in actual engineering with high requirements for dynamic load.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-17092-4