Coordination of Reactive Power in Grid-Connected Wind Farms for Voltage Stability Enhancement

This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-sta...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems Vol. 29; no. 5; pp. 2381 - 2390
Main Authors: Kumar, V. Seshadri Sravan, Reddy, Kommi Krishna, Thukaram, D.
Format: Journal Article
Language:English
Published: New York IEEE 01-09-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the feasibility of utilizing the reactive power of grid-connected variable-speed wind generators to enhance the steady-state voltage stability margin of the system. Allowing wind generators to work at maximum reactive power limit may cause the system to operate near the steady-state stability limit, which is undesirable. This necessitates proper coordination of reactive power output of wind generators with other reactive power controllers in the grid. This paper presents a trust region framework for coordinating reactive output of wind generators with other reactive sources for voltage stability enhancement. Case studies on 418-bus equivalent system of Indian southern grid indicates the effectiveness of proposed methodology in enhancing the steady-state voltage stability margin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2014.2300157