Dynamic Average-Value Modeling of CIGRE HVDC Benchmark System
High-voltage direct-current (HVDC) systems play an important role in modern energy grids, whereas efficient and accurate models are often needed for system-level studies. Due to the inherent switching in HVDC converters, the detailed switch-level models are computationally expensive for the simulati...
Saved in:
Published in: | IEEE transactions on power delivery Vol. 29; no. 5; pp. 2046 - 2054 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
IEEE
01-10-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High-voltage direct-current (HVDC) systems play an important role in modern energy grids, whereas efficient and accurate models are often needed for system-level studies. Due to the inherent switching in HVDC converters, the detailed switch-level models are computationally expensive for the simulation of large-signal transients and hard to linearize for small-signal frequency-domain characterization. In this paper, a dynamic average-value model (AVM) of the first CIGRE HVDC benchmark system is developed in a state-variable-based simulator, such as Matlab/Simulink, and nodal-analysis-based electromagnetic transient program (EMTP), such as PSCAD/EMTDC. The 12-pulse converters in the HVDC system are modeled with a set of nonlinear algebraic functions that are extracted numerically. The results from the average-value models are compared with the results of the detailed simulation to verify the accuracy of the AVMs in predicting the large-signal time-domain transients. The developed dynamic average models are shown to have computational advantages. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0885-8977 1937-4208 |
DOI: | 10.1109/TPWRD.2014.2340870 |