Dynamic Average-Value Modeling of CIGRE HVDC Benchmark System

High-voltage direct-current (HVDC) systems play an important role in modern energy grids, whereas efficient and accurate models are often needed for system-level studies. Due to the inherent switching in HVDC converters, the detailed switch-level models are computationally expensive for the simulati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery Vol. 29; no. 5; pp. 2046 - 2054
Main Authors: Atighechi, H., Chiniforoosh, S., Jatskevich, J., Davoudi, A., Martinez, J. A., Faruque, M. O., Sood, V., Saeedifard, M., Cano, J. M., Mahseredjian, J., Aliprantis, D. C., Strunz, K.
Format: Journal Article
Language:English
Published: New York IEEE 01-10-2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-voltage direct-current (HVDC) systems play an important role in modern energy grids, whereas efficient and accurate models are often needed for system-level studies. Due to the inherent switching in HVDC converters, the detailed switch-level models are computationally expensive for the simulation of large-signal transients and hard to linearize for small-signal frequency-domain characterization. In this paper, a dynamic average-value model (AVM) of the first CIGRE HVDC benchmark system is developed in a state-variable-based simulator, such as Matlab/Simulink, and nodal-analysis-based electromagnetic transient program (EMTP), such as PSCAD/EMTDC. The 12-pulse converters in the HVDC system are modeled with a set of nonlinear algebraic functions that are extracted numerically. The results from the average-value models are compared with the results of the detailed simulation to verify the accuracy of the AVMs in predicting the large-signal time-domain transients. The developed dynamic average models are shown to have computational advantages.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2014.2340870