Abasic site–peptide cross-links are blocking lesions repaired by AP endonucleases

Abstract Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA–protein cross-links. Those are subject to...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research Vol. 51; no. 12; pp. 6321 - 6336
Main Authors: Yudkina, Anna V, Bulgakov, Nikita A, Kim, Daria V, Baranova, Svetlana V, Ishchenko, Alexander A, Saparbaev, Murat K, Koval, Vladimir V, Zharkov, Dmitry O
Format: Journal Article
Language:English
Published: England Oxford University Press 07-07-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA–protein cross-links. Those are subject to proteolysis but the fate of the resulting AP–peptide cross-links (APPXLs) is unclear. Here, we report two in vitro models of APPXLs synthesized by cross-linking of DNA glycosylases Fpg and OGG1 to DNA followed by trypsinolysis. The reaction with Fpg produces a 10-mer peptide cross-linked through its N-terminus, while OGG1 yields a 23-mer peptide attached through an internal lysine. Both adducts strongly blocked Klenow fragment, phage RB69 polymerase, Saccharolobus solfataricus Dpo4, and African swine fever virus PolX. In the residual lesion bypass, mostly dAMP and dGMP were incorporated by Klenow and RB69 polymerases, while Dpo4 and PolX used primer/template misalignment. Of AP endonucleases involved in BER, Escherichia coli endonuclease IV and its yeast homolog Apn1p efficiently hydrolyzed both adducts. In contrast, E. coli exonuclease III and human APE1 showed little activity on APPXL substrates. Our data suggest that APPXLs produced by proteolysis of AP site-trapped proteins may be removed by the BER pathway, at least in bacterial and yeast cells. Graphical Abstract Graphical Abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkad423