An innovative model for conductivity of graphene-based system by networked nano-sheets, interphase and tunneling zone
This study presents a simple equation for the conductivity of graphene-filled nanocomposites by considering graphene size, amount of filler in the net, interphase deepness, tunneling size, and properties of the net. The amount of nanoparticles in the net is related to the percolation threshold and e...
Saved in:
Published in: | Scientific reports Vol. 12; no. 1; p. 15179 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
07-09-2022
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study presents a simple equation for the conductivity of graphene-filled nanocomposites by considering graphene size, amount of filler in the net, interphase deepness, tunneling size, and properties of the net. The amount of nanoparticles in the net is related to the percolation threshold and effective filler content. The novel model is analyzed using the measured conductivity of numerous examples and the factors’ impacts on the conductivity. Both experienced data and parametric examinations verify the correctness of the novel model. Among the studied factors, filler amount and interphase deepness implicitly manage the conductivity from 0 to 7 S/m. It is explained that the interphase amount affects the operative quantity of nanofiller, percolation threshold, and amount of nets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-19479-9 |