Trip-Based Optimal Power Management of Plug-in Hybrid Electric Vehicles

Hybrid electric vehicles (HEVs) have demonstrated the capability to improve fuel economy and emissions. The plug-in HEV (PHEV), utilizing more battery power, has become a more attractive upgrade of the HEV. The charge-depletion mode is more appropriate for the power management of PHEVs, i.e., the st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology Vol. 57; no. 6; pp. 3393 - 3401
Main Authors: Qiuming Gong, Qiuming Gong, Yaoyu Li, Yaoyu Li, Zhong-Ren Peng, Zhong-Ren Peng
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-11-2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hybrid electric vehicles (HEVs) have demonstrated the capability to improve fuel economy and emissions. The plug-in HEV (PHEV), utilizing more battery power, has become a more attractive upgrade of the HEV. The charge-depletion mode is more appropriate for the power management of PHEVs, i.e., the state of charge (SOC) is expected to drop to a low threshold when the vehicle reaches the trip destination. Trip information has so far been considered as future information for vehicle operation and is thus not available a priori . This situation can be changed by the recent advancement in intelligent transportation systems (ITSs) based on the use of on-board global positioning systems (GPSs), geographical information systems (GISs), and advanced traffic flow modeling techniques. In this paper, a new approach to optimal power management of PHEVs in the charge-depletion mode is proposed with driving cycle modeling based on the historic traffic information. A dynamic programming (DP) algorithm is applied to reinforce the charge-depletion control such that the SOC drops to a specific terminal value at the end of the driving cycle. The vehicle model was based on a hybrid electric sport utility vehicle (SUV). Only fuel consumption is considered for the current stage of the study. A simulation study was conducted for several standard driving cycles and two trip models using the proposed method, and the results showed significant improvement in fuel economy compared with a rule-based control and a depletion sustenance control for most cases. Furthermore, the results showed much better consistency in fuel economy compared with rule-based and depletion sustenance control.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2008.921622