Impact of Fat Grip Attachments on Muscular Strength and Neuromuscular Activation During Resistance Exercise

ABSTRACTKrings, BM, Shepherd, BD, Swain, JC, Turner, AJ, Chander, H, Waldman, HS, McAllister, MJ, Knight, AC, and Smith, JW. Impact of fat grip attachments on muscular strength and neuromuscular activation during resistance exercise. J Strength Cond Res XX(X)000–000, 2018—The purpose of this study w...

Full description

Saved in:
Bibliographic Details
Published in:Journal of strength and conditioning research Vol. 35; no. Suppl 1; pp. S152 - S157
Main Authors: Krings, Ben M., Shepherd, Brandon D., Swain, Jon C., Turner, Alana J., Chander, Harish, Waldman, Hunter S., McAllister, Matthew J., Knight, Adam C., Smith, JohnEric W.
Format: Journal Article
Language:English
Published: United States Journal of Strength and Conditioning Research 01-02-2021
Copyright by the National Strength & Conditioning Association
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACTKrings, BM, Shepherd, BD, Swain, JC, Turner, AJ, Chander, H, Waldman, HS, McAllister, MJ, Knight, AC, and Smith, JW. Impact of fat grip attachments on muscular strength and neuromuscular activation during resistance exercise. J Strength Cond Res XX(X)000–000, 2018—The purpose of this study was to examine the acute effects of Fat Gripz (FG) on muscular activation and strength. Resistance trained men (n = 15; age = 22.4 ± 2.3 years; mass = 83.2 ± 11.1 kg) performed 2 experimental trials in a randomized order. Subjects completed 1 repetition maximum (1RM) testing with an Olympic barbell (OB) and with FG attached to an OB during the exercises of deadlift, bent-over row, upright row, concentration curl, and completed maximum repetitions of pull-ups until failure. Surface electromyography (EMG) was used to measure muscle activity from 8 upper extremity muscles (trapezius, medial deltoid, biceps brachii, triceps brachii, flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis, and extensor carpi ulnaris), while performing maximal voluntary isometric contractions during 1RM trials and while performing maximum number of pull-ups. When using the FG, 1RM strength was significantly decreased for each exercise, and the maximal number of pull-ups completed was significantly lower. Electromyography muscle activity was significantly increased in the forearm and shoulder muscles, but significantly decreased in the upper arm muscles with the use of FG during deadlift, bent-over row, and pull-ups. However, there were no differences for EMG activity for upright row and concentration curl. Differences in maximal strength, pull-up performance, and EMG activity with FG use may be due to the different muscle length positions. Although FG training may increase neuromuscular activation, decrements in muscular strength may result in prescribing low training loads that may not be ideal for building muscular strength.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0000000000002954