Indefinite and bidirectional near-infrared nanocrystal photoswitching
Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging 1 – 4 , nanophotonics 5 , and optical data storage 6 , 7 , to targeted pharmacology, optogenetics, and chemical reactivity 8 . These photoswitchable probes, including organic f...
Saved in:
Published in: | Nature (London) Vol. 618; no. 7967; pp. 951 - 958 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
29-06-2023
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Materials whose luminescence can be switched by optical stimulation drive technologies ranging from superresolution imaging
1
–
4
, nanophotonics
5
, and optical data storage
6
,
7
, to targeted pharmacology, optogenetics, and chemical reactivity
8
. These photoswitchable probes, including organic fluorophores and proteins, can be prone to photodegradation and often operate in the ultraviolet or visible spectral regions. Colloidal inorganic nanoparticles
6
,
9
can offer improved stability, but the ability to switch emission bidirectionally, particularly with near-infrared (NIR) light, has not, to our knowledge, been reported in such systems. Here, we present two-way, NIR photoswitching of avalanching nanoparticles (ANPs), showing full optical control of upconverted emission using phototriggers in the NIR-I and NIR-II spectral regions useful for subsurface imaging. Employing single-step photodarkening
10
–
13
and photobrightening
12
,
14
–
16
, we demonstrate indefinite photoswitching of individual nanoparticles (more than 1,000 cycles over 7 h) in ambient or aqueous conditions without measurable photodegradation. Critical steps of the photoswitching mechanism are elucidated by modelling and by measuring the photon avalanche properties of single ANPs in both bright and dark states. Unlimited, reversible photoswitching of ANPs enables indefinitely rewritable two-dimensional and three-dimensional multilevel optical patterning of ANPs, as well as optical nanoscopy with sub-Å localization superresolution that allows us to distinguish individual ANPs within tightly packed clusters.
This study reports unlimited near-infrared photoswitching in inorganic avalanching nanoparticles via a discrete shift of threshold intensity mediated by internal defect-based colour centres. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) AC02-05CH11231; SC0019443 |
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-023-06076-7 |