Self-Supervised Joint Learning Fault Diagnosis Method Based on Three-Channel Vibration Images

The accuracy of bearing fault diagnosis is of great significance for the reliable operation of rotating machinery. In recent years, increasing attention has been paid to intelligent fault diagnosis techniques based on deep learning. However, most of these methods are based on supervised learning wit...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 21; no. 14; p. 4774
Main Authors: Zhang, Weiwei, Chen, Deji, Kong, Yang
Format: Journal Article
Language:English
Published: Basel MDPI AG 13-07-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The accuracy of bearing fault diagnosis is of great significance for the reliable operation of rotating machinery. In recent years, increasing attention has been paid to intelligent fault diagnosis techniques based on deep learning. However, most of these methods are based on supervised learning with a large amount of labeled data, which is a challenge for industrial applications. To reduce the dependence on labeled data, a self-supervised joint learning (SSJL) fault diagnosis method based on three-channel vibration images is proposed. The method combines self-supervised learning with supervised learning, makes full use of unlabeled data to learn fault features, and further improves the feature recognition rate by transforming the data into three-channel vibration images. The validity of the method was verified using two typical data sets from a motor bearing. Experimental results show that this method has higher diagnostic accuracy for small quantities of labeled data and is superior to the existing methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s21144774