(+)-Borneol inhibits the generation of reactive oxygen species and neutrophil extracellular traps induced by phorbol-12-myristate-13-acetate
Background and purpose: Neutrophil extracellular traps (NETs) are special web-like structures that can be generated in both infectious and noninfectious diseases. Previous studies showed that reactive oxygen species (ROS) were crucial in the formation of NETs (NETosis). The purpose of this study is...
Saved in:
Published in: | Frontiers in pharmacology Vol. 13; p. 1023450 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Frontiers Media S.A
07-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background and purpose:
Neutrophil extracellular traps (NETs) are special web-like structures that can be generated in both infectious and noninfectious diseases. Previous studies showed that reactive oxygen species (ROS) were crucial in the formation of NETs (NETosis). The purpose of this study is to evaluate the effect of (+)-borneol, an antioxidant, on NETosis.
Methods:
Human neutrophils were stimulated with phorbol-12-myristate-13-acetate (PMA) to induce NETosis
in vitro
. Neutrophils treated with (+)-borneol at three different time points (−30 min, 0, and 30 min) associated with PMA stimulation were used to examine the effect of (+)-borneol on the formation of NETs. The ROS generation of neutrophils was also measured to explore the potential mechanism of the inhibitory effect of (+)-borneol on NETosis.
Results:
(+)-Borneol pretreatment inhibited NETosis induced by PMA. Immunofluorescence staining visualized and confirmed the inhibitory effect. (+)-Borneol inhibited the burst of ROS in neutrophils caused by PMA. Suppressing NADPH oxidase or protein kinase C (PKC) eliminated the effect of (+)-borneol on NETosis. Moreover, inhibiting Toll-like receptor 2 (TLR2) led to increased NETosis which can be inhibited by (+)-borneol.
Conclusion:
(+)-Borneol decreases the ROS level in activated neutrophils and inhibits NETosis triggered by PMA stimulation
in vitro
. (+)-Borneol therapy may be effective in some NET-dependent conditions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Barbara Rossi, University of Verona, Italy Ajantha Sinniah, University of Malaya, Malaysia These authors have contributed equally to this work This article was submitted to Inflammation Pharmacology, a section of the journal Frontiers in Pharmacology Reviewed by: Lindsay Marshall, Humane Society of the United States, United States |
ISSN: | 1663-9812 1663-9812 |
DOI: | 10.3389/fphar.2022.1023450 |