W2476 ameliorates β-cell dysfunction and exerts therapeutic effects in mouse models of diabetes via modulation of the thioredoxin-interacting protein signaling pathway

Recent evidence shows that high glucose levels recruit carbohydrate response element-binding protein, which binds the promoter of thioredoxin-interacting protein (txnip), thereby regulating its expression in β-cells. Overexpression of txnip not only induces β-cell apoptosis but also reduces insulin...

Full description

Saved in:
Bibliographic Details
Published in:Acta pharmacologica Sinica Vol. 38; no. 7; pp. 1024 - 1037
Main Authors: Li, Ting, Lin, Guang-yao, Zhong, Li, Zhou, Yan, Wang, Jia, Zhu, Yue, Feng, Yang, Cai, Xiao-qing, Liu, Qing, Nosjean, Olivier, Boutin, Jean A, Renard, Pierre, Yang, De-hua, Wang, Ming-wei
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-07-2017
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent evidence shows that high glucose levels recruit carbohydrate response element-binding protein, which binds the promoter of thioredoxin-interacting protein (txnip), thereby regulating its expression in β-cells. Overexpression of txnip not only induces β-cell apoptosis but also reduces insulin production. Thus, the discovery of compounds that either inhibit TXNIP activity or suppress its expression was the focus of the present study. INS-IE cells stably transfected with either a txnip proximal glucose response element connected to a luciferase reporter plasmid (BG73) or full-length txnip promoter connected to a luciferase reporter plasmid (CL108) were used in primary and secondary high-throughput screening campaigns, respectively. From 256 000 synthetic compounds, a small molecule compound, W2476 [9-((1-(4-acetyl-phenyloxy)-ethyl)-2-)adenine], was identified as a modulator of the TXNIP-regulated signaling pathway following the screening and characterized using a battery of bioassays. The preventive and therapeutic properties of W2476 were further examined in streptozotocin-induced diabetic and diet-induced obese mice. Treatment with W2476 (1, 5, and 15 pmol/L) dose-dependently inhibited high glucose-induced TXNIP expression at the mRNA and protein levels in INS-1E cells and rat pancreatic islets. Furthermore, W2476 treatment prevented INS-IE cells from apoptosis induced by chronic exposure of high glucose and enhanced insulin production in vitro. Oral administration of W2476 (200 mg-kg-1.d-1) rescued streptozotocin-induced diabetic mice by promoting β-cell survival and enhancing insulin secretion. This therapeutic property of W2476 was further demonstrated by its ability to improve glucose homeostasis and insulin sensitivity in diet-induced obese mice. Thus, chemical intervention of the TXNIP- regulated signaling pathway might present a viable approach to manage diabetes.
Bibliography:diabetes; glucose; TXNIP; β-cells; W2476; high-throughput screening
Recent evidence shows that high glucose levels recruit carbohydrate response element-binding protein, which binds the promoter of thioredoxin-interacting protein (txnip), thereby regulating its expression in β-cells. Overexpression of txnip not only induces β-cell apoptosis but also reduces insulin production. Thus, the discovery of compounds that either inhibit TXNIP activity or suppress its expression was the focus of the present study. INS-IE cells stably transfected with either a txnip proximal glucose response element connected to a luciferase reporter plasmid (BG73) or full-length txnip promoter connected to a luciferase reporter plasmid (CL108) were used in primary and secondary high-throughput screening campaigns, respectively. From 256 000 synthetic compounds, a small molecule compound, W2476 [9-((1-(4-acetyl-phenyloxy)-ethyl)-2-)adenine], was identified as a modulator of the TXNIP-regulated signaling pathway following the screening and characterized using a battery of bioassays. The preventive and therapeutic properties of W2476 were further examined in streptozotocin-induced diabetic and diet-induced obese mice. Treatment with W2476 (1, 5, and 15 pmol/L) dose-dependently inhibited high glucose-induced TXNIP expression at the mRNA and protein levels in INS-1E cells and rat pancreatic islets. Furthermore, W2476 treatment prevented INS-IE cells from apoptosis induced by chronic exposure of high glucose and enhanced insulin production in vitro. Oral administration of W2476 (200 mg-kg-1.d-1) rescued streptozotocin-induced diabetic mice by promoting β-cell survival and enhancing insulin secretion. This therapeutic property of W2476 was further demonstrated by its ability to improve glucose homeostasis and insulin sensitivity in diet-induced obese mice. Thus, chemical intervention of the TXNIP- regulated signaling pathway might present a viable approach to manage diabetes.
31-1347/R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1671-4083
1745-7254
DOI:10.1038/aps.2017.15