Measurement of the permeability of biological membranes. Application to the glomerular wall
The transport equation describing the flow of solute across a membrane has been modified on the basis of theoretical studies calculating the drag of a sphere moving in a viscous liquid undergoing Poiseuille flow inside a cylinder. It is shown that different frictional resistance terms should be intr...
Saved in:
Published in: | The Journal of general physiology Vol. 62; no. 4; pp. 489 - 507 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
The Rockefeller University Press
01-10-1973
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The transport equation describing the flow of solute across a membrane has been modified on the basis of theoretical studies calculating the drag of a sphere moving in a viscous liquid undergoing Poiseuille flow inside a cylinder. It is shown that different frictional resistance terms should be introduced to calculate the contributions of diffusion and convection. New sieving equations are derived to calculate r and A(p)/Deltax (respectively, the pore radius and the total area of the pores per unit of path length). These equations provide a better agreement than the older formulas between the calculated and the experimental glomerular sieving coefficients for [(125)I]polyvinylpyrrolidone (PVP) fractions with a mean equivalent radius between 19 and 37 A. From r and A(p)/Deltax, the mean effective glomerular filtration pressure has been calculated, applying Poiseuille's law. A value of 15.4 mm Hg has been derived from the mean sieving curve obtained from 23 experiments performed on normal anesthetized dogs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-1295 1540-7748 |
DOI: | 10.1085/jgp.62.4.489 |