Deciphering Deazapurine Biosynthesis: Pathway for Pyrrolopyrimidine Nucleosides Toyocamycin and Sangivamycin

Pyrrolopyrimidine nucleosides analogs, collectively referred to as deazapurines, are an important class of structurally diverse compounds found in a wide variety of biological niches. In this report, a cluster of genes from Streptomyces rimosus (ATCC 14673) involved in production of the deazapurine...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry & biology Vol. 15; no. 8; pp. 790 - 798
Main Authors: McCarty, Reid M., Bandarian, Vahe
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 25-08-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pyrrolopyrimidine nucleosides analogs, collectively referred to as deazapurines, are an important class of structurally diverse compounds found in a wide variety of biological niches. In this report, a cluster of genes from Streptomyces rimosus (ATCC 14673) involved in production of the deazapurine antibiotics sangivamycin and toyocamycin was identified. The cluster includes toyocamycin nitrile hydratase, an enzyme that catalyzes the conversion of toyocamycin to sangivamycin. In addition to this rare nitrile hydratase, the cluster encodes a GTP cyclohydrolase I, linking the biosynthesis of deazapurines to folate biosynthesis, and a set of purine salvage/biosynthesis genes, which presumably convert the guanine moiety from GTP to the adenine-like deazapurine base found in toyocamycin and sangivamycin. The gene cluster presented here could potentially serve as a model to allow identification of deazapurine biosynthetic pathways in other bacterial species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1074-5521
1879-1301
DOI:10.1016/j.chembiol.2008.07.012