Online monitoring of metabolism and morphology of peptide-treated neuroblastoma cancer cells and keratinocytes
Antimicrobial peptides are promising anti-cancer agents with a unique mode of action. We established the usage of a chip-based sensor to monitor the dynamic interplay between cells on the chip and peptides and compared it with endpoint tests. Human neuroblastoma cancer cells and spontaneously immort...
Saved in:
Published in: | Journal of bioenergetics and biomembranes Vol. 43; no. 3; pp. 275 - 285 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Boston
Springer US
01-06-2011
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Antimicrobial peptides are promising anti-cancer agents with a unique mode of action. We established the usage of a chip-based sensor to monitor the dynamic interplay between cells on the chip and peptides and compared it with endpoint tests. Human neuroblastoma cancer cells and spontaneously immortalized non-cancer keratinocytes were perfused with representative peptides (NK-2, NK11, and melittin). The sensor system enabled continuous recording of cell layer impedance (adhesion/confluence), oxygen consumption (respiration) and extracellular acidification (glycolysis) and provided insights in cell damage, stress response and recovery. Cells responded differentially to peptide treatment. During perfusion, peptides accumulated on the cell surface until they reached a critical concentration. Preceding to cell death, melittin triggered glycolysis, suggesting stress response. NK-2 induced no change in energy metabolism, but led to an increase in impedance, i.e. a temporarily altered morphology, which appeared to be an excellent parameter to detect subtle structural changes of cell layers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0145-479X 1573-6881 |
DOI: | 10.1007/s10863-011-9350-y |