Optimization of Bioglass® Scaffold Fabrication Process
The production of mechanically reliable scaffolds from bioceramics for use in bone tissue engineering remains challenging. This paper describes the establishment of optimal processing parameters of Bioglass® scaffolds using the replication/slurry‐dip‐coating technique, based on theoretical design an...
Saved in:
Published in: | Journal of the American Ceramic Society Vol. 94; no. 12; pp. 4184 - 4190 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Columbus
Blackwell Publishing Ltd
01-12-2011
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The production of mechanically reliable scaffolds from bioceramics for use in bone tissue engineering remains challenging. This paper describes the establishment of optimal processing parameters of Bioglass® scaffolds using the replication/slurry‐dip‐coating technique, based on theoretical design and experimental investigation. The foams fabricated under the optimized conditions, i.e., 5–20 μm particles and sintering at 1000°C–1100°C for 1–2 h, showed reproducible mechanical properties that could be predicted by Gibson and Ashby's theory. Excessively small (nano‐sized) or overly large (>30 μm) particles both resulted in poor quality scaffolds with unsatisfactory mechanical performance, due to a high population of microcracks in struts and poor fusion between particles during sintering, respectively. In conclusion, a mechanically reliable scaffold can be achieved using Bioglass® and the replication/slurry‐dip‐coating technique, provided that the particle size of the Bioglass powder is within the range of 5–20 μm and an appropriate sintering program (1000°C–1100°C, 1–2 h) is used. |
---|---|
Bibliography: | ArticleID:JACE4766 istex:21BA79B73B7E9B902C499D5093C78C85FE7FB638 ark:/67375/WNG-96J9NCB9-9 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0002-7820 1551-2916 |
DOI: | 10.1111/j.1551-2916.2011.04766.x |