Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines

Cancer immunotherapy with dendritic cell (DC)-based vaccines has been used to treat various malignancies for more than two decades, however generally showed a limited clinical success. Among various factors responsible for their modest clinical activity is the lack of universally applied, standardiz...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine Vol. 36; no. 29; pp. 4171 - 4180
Main Authors: Dobrovolskienė, N., Pašukonienė, V., Darinskas, A., Kraśko, J.A., Žilionytė, K., Mlynska, A., Gudlevičienė, Ž., Mišeikytė-Kaubrienė, E., Schijns, V., Lubitz, W., Kudela, P., Strioga, M.
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 05-07-2018
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cancer immunotherapy with dendritic cell (DC)-based vaccines has been used to treat various malignancies for more than two decades, however generally showed a limited clinical success. Among various factors responsible for their modest clinical activity is the lack of universally applied, standardized protocols for the generation of clinical-grade DC vaccines, capable of inducing effective anti-tumor immune responses. We investigated Bacterial Ghosts (BGs) – empty envelopes of Gram-negative bacteria – as a tool for optimized production of DC vaccines. BGs possess various intact cell surface structures, exhibiting strong adjuvant properties required for the induction of DC maturation, whereas their empty internal space can be easily filled with a source tumor antigens, e.g. tumor lysate. Hence BGs emerge as an excellent platform for both the induction of immunogenic DC maturation and loading with tumor antigens in a single-step procedure. We compared the phenotype, cytokine secretion profile, functional activity and ability to induce immunogenic T-cell responses in vitro of human monocyte-derived DCs generated using BG platform and DCs matured with widely used lipopolysaccharide (LPS) plus interferon-γ cocktail and loaded with tumor lysate. Both approaches induced DC maturation, however BG-based protocol was superior to LPS-based protocol in terms of the ability to induce DCs with a lower tolerogenic potential, resulting in a more robust CD8+ T cell activation and their functional activity as well as significantly lower induction of regulatory T cells. These superior parameters are attributed, at least in part, to the ability of BG-matured DCs to resist potential immunosuppressive and pro-tolerogenic activity of various tumor cell lysates, including melanoma, renal carcinoma and glioblastoma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0264-410X
1873-2518
DOI:10.1016/j.vaccine.2018.06.016