Ancillary services and optimal household energy management with photovoltaic production

This article presents a project designed to increase the monetary value of photovoltaic (PV) solar production for residential applications. To contribute to developing new functionalities for this type of PV system and an efficient control system for optimising its operation, this article explains h...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 35; no. 1; pp. 55 - 64
Main Authors: Clastres, C., Ha Pham, T.T., Wurtz, F., Bacha, S.
Format: Journal Article
Language:English
Published: Kidlington Elsevier Ltd 2010
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article presents a project designed to increase the monetary value of photovoltaic (PV) solar production for residential applications. To contribute to developing new functionalities for this type of PV system and an efficient control system for optimising its operation, this article explains how the proposed system could contract to provide ancillary services, particularly the supply of active power services. This provision of service by a PV-based system for domestic applications, not currently available, has prompted a market design proposal related to the distribution system. The mathematical model for calculating the system's optimal operation (sources, load and exchanges of power with the grid) results in a linear mix integer optimisation problem in which the objective is to maximise the profits achieved by taking part in the electricity market. Our approach is illustrated in a case study. PV producers could gain by taking part in the markets for balancing power or ancillary services despite the negative impact on profit of several types of uncertainty, notably the intermittent nature of the PV source.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0360-5442
DOI:10.1016/j.energy.2009.08.025