An in vitro model of impaction during hip arthroplasty

Impaction is required to properly seat press-fit implants and ensure initial implant stability and long term bone ingrowth, however excessive impaction or press-fit presents a high fracture risk in the acetabulum and femur. Current in-vitro impaction testing methods do not replicate the compliance o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics Vol. 82; pp. 220 - 227
Main Authors: Doyle, Ruben, Boughton, Oliver, Plant, Daniel, Desoutter, George, Cobb, Justin P., Jeffers, Jonathan R.T.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 03-01-2019
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Impaction is required to properly seat press-fit implants and ensure initial implant stability and long term bone ingrowth, however excessive impaction or press-fit presents a high fracture risk in the acetabulum and femur. Current in-vitro impaction testing methods do not replicate the compliance of the soft tissues surrounding the hip, a factor that may be important in fracture and force prediction. This study presents the measurement of compliance of the soft tissues supporting the hip during impaction in operative conditions, and replicates these in vitro. Hip replacements were carried out on 4 full body cadavers while impact force traces and acetabular/femoral displacement were measured. Compliance was then simulated computationally using a Voigt model. These data were subsequently used to inform the design of a representative in-vitro drop rig. Effective masses of 19.7 kg and 12.7 kg, spring stiffnesses of 8.0 kN/m and 4.1 kN/m and dashpot coefficients of 595 N s/m and 322 N s/m were calculated for the acetabular and femoral soft tissues respectively. A good agreement between cadaveric and in-vitro peak displacement and rise time during impact is found. Such an in-vitro setup is of use during laboratory testing, simulation or even surgical training.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2018.10.030