Avoiding Aliasing in Allan Variance: An Application to Fiber Link Data Analysis

Optical fiber links are known as the most performing tools to transfer ultrastable frequency reference signals. However, these signals are affected by phase noise up to bandwidths of several kilohertz and a careful data processing strategy is required to properly estimate the uncertainty. This aspec...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 63; no. 4; pp. 646 - 655
Main Authors: Calosso, Claudio E., Clivati, Cecilia, Micalizio, Salvatore
Format: Journal Article
Language:English
Published: United States IEEE 01-04-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optical fiber links are known as the most performing tools to transfer ultrastable frequency reference signals. However, these signals are affected by phase noise up to bandwidths of several kilohertz and a careful data processing strategy is required to properly estimate the uncertainty. This aspect is often overlooked and a number of approaches have been proposed to implicitly deal with it. Here, we face this issue in terms of aliasing and show how typical tools of signal analysis can be adapted to the evaluation of optical fiber links performance. In this way, it is possible to use the Allan variance (AVAR) as estimator of stability and there is no need to introduce other estimators. The general rules we derive can be extended to all optical links. As an example, we apply this method to the experimental data we obtained on a 1284-km coherent optical link for frequency dissemination, which we realized in Italy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-3010
1525-8955
DOI:10.1109/TUFFC.2016.2519265