Lower Ilium Evolution in Apes and Hominins

ABSTRACT Elucidating the pelvic morphology of the Pan‐Homo last common ancestor (LCA) is crucial for understanding ape and human evolution. The pelvis of Ardipithecus ramidus has been the basis of controversial interpretations of the LCA pelvis. In particular, it was proposed that the lower ilium be...

Full description

Saved in:
Bibliographic Details
Published in:Anatomical record (Hoboken, N.J. : 2007) Vol. 300; no. 5; pp. 828 - 844
Main Authors: Hammond, Ashley S., Almécija, Sergio
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01-05-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Elucidating the pelvic morphology of the Pan‐Homo last common ancestor (LCA) is crucial for understanding ape and human evolution. The pelvis of Ardipithecus ramidus has been the basis of controversial interpretations of the LCA pelvis. In particular, it was proposed that the lower ilium became elongate independently in the orangutan and chimpanzee clades, making these taxa poor analogues for the pelvis of the LCA. This study examines the variation in relative lower ilium height between and within living and fossil hominoid species (and other anthropoids), and models its evolution using available fossil hominoids as calibration points. We find nuanced differences in relative lower ilium height among living hominoids, particularly in regards to gorillas, which do not have elongate lower ilia (because they are likely to represent the plesiomorphic hominoid condition for this trait). We also show that differences in relative lower ilium height among hominoid taxa are not readily explained by differences in size between species. Our maximum likelihood ancestral state reconstructions support inferences that chimpanzees (Pan troglodytes in particular) and orangutans evolved their elongate lower ilia independently. We also find that the predicted lower ilium height of the Pan‐Homo LCA is shorter than all great apes except gorillas. This study adds to a growing body of evidence that finds different regions of the body show different evolutionary histories in different hominoids, and underscores that the unique combinations of morphologies of each modern and fossil hominoid species should be considered when reconstructing the mosaic nature of the Pan‐Homo LCA. Anat Rec, 300:828–844, 2017. © 2017 Wiley Periodicals, Inc.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1932-8486
1932-8494
DOI:10.1002/ar.23545