Low-density Lipoprotein Receptor-related Protein 1 (LRP1)-dependent Cell Signaling Promotes Axonal Regeneration

Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outg...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 288; no. 37; pp. 26557 - 26568
Main Authors: Yoon, Choya, Van Niekerk, Erna A., Henry, Kenneth, Ishikawa, Tetsuhiro, Orita, Sumihisa, Tuszynski, Mark H., Campana, W. Marie
Format: Journal Article
Language:English
Published: United States Elsevier Inc 13-09-2013
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the hypothesis that LRP1 activation would activate canonical neurotrophic factor signaling in adult neurons and promote axonal regeneration after spinal cord injury. We now find that treatment of adult rat dorsal root ganglion neurons in vitro with LRP1 agonists (the receptor binding domain of α-2-macroglobulin or the hemopexin domain of matrix metalloproteinase 9) induces TrkC, Akt, and ERK activation; significantly increases neurite outgrowth (p < 0.01); and overcomes myelin inhibition (p < 0.05). These effects require Src family kinase activation, a classic LRP1-mediated Trk transactivator. Moreover, intrathecal infusions of LRP1 agonists significantly enhance sensory axonal sprouting and regeneration after spinal cord injury in rats compared with control-infused animals (p < 0.05). A significant role is established for lipoprotein receptors in sprouting and regeneration after CNS injury, identifying a novel class of therapeutic targets to explore for traumatic neurological disorders. Background: LRP1 activation is neuroprotective in vitro. The role of LRP1 in axonal plasticity and regeneration is unknown. Results: LRP1-dependent cell signaling that includes TrkC activation promotes axonal growth in the CNS. Conclusion: LRP1 agonists promote regeneration after spinal cord injury. Significance: A significant role is established for LRP1 in axonal growth and regeneration after CNS injury, identifying a novel class of therapeutic targets for neurological disorders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Both authors contributed equally to this work.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M113.478552