Integrating Grant‐funded Research into the Undergraduate Biology Curriculum Using IMG‐ACT
It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and labora...
Saved in:
Published in: | Biochemistry and molecular biology education Vol. 41; no. 1; pp. 16 - 23 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Wiley-Blackwell
01-01-2013
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has become clear in current scientific pedagogy that the emersion of students in the scientific process in terms of designing, implementing, and analyzing experiments is imperative for their education; as such, it has been our goal to model this active learning process in the classroom and laboratory in the context of a genuine scientific question. Toward this objective, the National Science Foundation funded a collaborative research grant between a primarily undergraduate institution and a research‐intensive institution to study the chemotactic responses of the bacterium Pseudomonas putida F1. As part of the project, a new Bioinformatics course was developed in which undergraduates annotate relevant regions of the P. putida F1 genome using Integrated Microbial Genomes Annotation Collaboration Toolkit, a bioinformatics interface specifically developed for undergraduate programs by the Department of Energy Joint Genome Institute. Based on annotations of putative chemotaxis genes in P. putida F1 and comparative genomics studies, undergraduate students from both institutions developed functional genomics research projects that evolved from the annotations. The purpose of this study is to describe the nature of the NSF grant, the development of the Bioinformatics lecture and wet laboratory course, and how undergraduate student involvement in the project that was initiated in the classroom has served as a springboard for independent undergraduate research projects. © 2012 by The International Union of Biochemistry and Molecular Biology, 41(1):16–23, 2013 |
---|---|
Bibliography: | This work is supported by the National Science Foundation (MCB‐0919930). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1470-8175 1539-3429 |
DOI: | 10.1002/bmb.20662 |