Cytotoxic and antiproliferative effects of thymoquinone on rat C6 glioma cells depend on oxidative stress

Thymoquinone (TQ) is a highly perspective chemotherapeutic agent against gliomas and glioblastomas because of its ability to cross the blood–brain barrier and its selective cytotoxicity for glioblastoma cells compared to primary astrocytes. Here, we tested the hypothesis that TQ-induced mild oxidati...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular biochemistry Vol. 462; no. 1-2; pp. 195 - 206
Main Authors: Krylova, N. G., Drobysh, M. S., Semenkova, G. N., Kulahava, T. A., Pinchuk, S. V., Shadyro, O. I.
Format: Journal Article
Language:English
Published: New York Springer US 01-12-2019
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thymoquinone (TQ) is a highly perspective chemotherapeutic agent against gliomas and glioblastomas because of its ability to cross the blood–brain barrier and its selective cytotoxicity for glioblastoma cells compared to primary astrocytes. Here, we tested the hypothesis that TQ-induced mild oxidative stress provokes C6 glioma cell apoptosis through redox-dependent alteration of MAPK proteins. We showed that low concentrations of TQ (20–50 μM) promoted cell-cycle arrest and induced hydrogen peroxide generation as a result of NADH-quinone oxidoreductase 1-catalyzed two-electron reduction of this quinone. Similarly, low concentrations of TQ efficiently conjugated intracellular GSH disturbing redox state of glioma cells and provoking mitochondrial dysfunction. We demonstrated that high concentrations of TQ (70–100 μM) induced reactive oxygen species generation due to its one-electron reduction. TQ provoked apoptosis in C6 glioma cells through mitochondrial potential dissipation and permeability transition pore opening. The identified TQ modes of action on C6 glioma cells open up the possibility of considering it as a promising agent to enhance the sensitivity of cancer cells to standard chemotherapeutic drugs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-019-03622-8