Effects of resveratrol on membrane biophysical properties: relevance for its pharmacological effects

The current study gathers a range of spectrophotometric and spectrofluorimetric techniques to systematically monitor the effects of resveratrol (trans-3,5,4′-trihydrostilbene) on the biophysical properties of membrane model systems consisting of unilamellar liposomes of phosphatidylcholine (DPPC) wi...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry and physics of lipids Vol. 163; no. 8; pp. 747 - 754
Main Authors: Brittes, J., Lúcio, M., Nunes, C., Lima, J.L.F.C., Reis, S.
Format: Journal Article
Language:English
Published: Ireland Elsevier Ireland Ltd 01-11-2010
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current study gathers a range of spectrophotometric and spectrofluorimetric techniques to systematically monitor the effects of resveratrol (trans-3,5,4′-trihydrostilbene) on the biophysical properties of membrane model systems consisting of unilamellar liposomes of phosphatidylcholine (DPPC) with the ultimate goal of relating these effects with some of the well documented pharmacological properties of this compound, and clarifying some controversial results reported on the literature. Physiological conditions have been pursued, such as a buffered pH control with adjusted ionic strength similar to the blood plasma conditions (pH 7.4, I=0.1M) and the study at different membrane physical states (gel phase and fluid phase) for the assessment of resveratrol-membrane: aqueous partition coefficient by derivative spectroscopy. Results obtained by fluorescence quenching and anisotropy studies indicate that resveratrol has a membrane fluidizing effect and is able to permeate the membrane even in the gel phase. These results mirror the well described antioxidant effect of resveratrol, since antioxidants have to reach peroxidised rigid membranes and increase membrane fluidity in order to interact more efficiently with lipid radicals in the disordered lipid bilayer. Location of resveratrol pointed also to a membrane distribution that is favourable for scavenging the lipid radicals and was elucidated using probes positioned at different membrane depths suggesting that this compound penetrates into the acyl membrane region but also positions its polar hydroxyl group near the headgroup region of the membrane.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-3084
1873-2941
DOI:10.1016/j.chemphyslip.2010.07.004