Brief Research Report: Anti-SARS-CoV-2 Immunity in Long Lasting Responders to Cancer Immunotherapy Through mRNA-Based COVID-19 Vaccination
Cancer patients (CPs) have been identified as particularly vulnerable to SARS-CoV-2 infection, and therefore are a priority group for receiving COVID-19 vaccination. From the patients with advanced solid tumors, about 20% respond very efficiently to immunotherapy with anti-PD1/PD-L1 antibodies and a...
Saved in:
Published in: | Frontiers in immunology Vol. 13; p. 908108 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Frontiers Media S.A
05-07-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cancer patients (CPs) have been identified as particularly vulnerable to SARS-CoV-2 infection, and therefore are a priority group for receiving COVID-19 vaccination. From the patients with advanced solid tumors, about 20% respond very efficiently to immunotherapy with anti-PD1/PD-L1 antibodies and achieve long lasting cancer responses. It is unclear whether an efficient cancer-specific immune response may also correlate with an efficient response upon COVID-19 vaccination. Here, we explored the antiviral immune response to the mRNA-based COVID-19 vaccine BNT162b2 in a group of 11 long-lasting cancer immunotherapy responders. We analysed the development of SARS-CoV-2-specific IgG serum antibodies, virus neutralizing capacities and T cell responses. Control groups included patients treated with adjuvant cancer immunotherapy (IMT, cohort B), CPs not treated with immunotherapy (no-IMT, cohort C) and healthy controls (cohort A). The median ELISA IgG titers significantly increased after the prime-boost COVID vaccine regimen in all cohorts (Cohort A: pre-vaccine = 900 (100-2700), 3 weeks (w) post-boost = 24300 (2700-72900); Cohort B: pre-vaccine = 300 (100-2700), 3 w post-boost = 8100 (300-72900); Cohort C: pre-vaccine = 500 (100-2700), 3 w post-boost = 24300 (300-72900)). However, at the 3 w post-prime time-point, only the healthy control group showed a statistically significant increase in antibody levels (Cohort A = 8100 (900-8100); Cohort B = 900 (300-8100); Cohort C = 900 (300-8100)) (P < 0.05). Strikingly, while all healthy controls generated high-level antibody responses after the complete prime-boost regimen (Cohort A = 15/15 (100%), not all CPs behaved alike [Cohort B= 12/14 (84'6%); Cohort C= 5/6 (83%)]. Their responses, including those of the long-lasting immunotherapy responders, were more variable (Cohort A: 3 w post-boost (median nAb titers = 95.32 (84.09-96.93), median Spike-specific IFN-γ response = 64 (24-150); Cohort B: 3 w post-boost (median nAb titers = 85.62 (8.22-97.19), median Spike-specific IFN-γ response (28 (1-372); Cohort C: 3 w post-boost (median nAb titers = 95.87 (11.8-97.3), median Spike-specific IFN-γ response = 67 (20-84)). Two long-lasting cancer responders did not respond properly to the prime-boost vaccination and did not generate S-specific IgGs, neutralizing antibodies or virus-specific T cells, although their cancer immune control persisted for years. Thus, although mRNA-based vaccines can induce both antibody and T cell responses in CPs, the immune response to COVID vaccination is independent of the capacity to develop an efficient anti-cancer immune response to anti PD-1/PD-L1 antibodies. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Avik Mandal, All India Institute of Medical Sciences Raipur, India; Sentiljana Gumeni, National and Kapodistrian University of Athens, Greece This article was submitted to Vaccines and Molecular Therapeutics, a section of the journal Frontiers in Immunology Edited by: Samir Kumar-Singh, University of Antwerp, Belgium |
ISSN: | 1664-3224 1664-3224 |
DOI: | 10.3389/fimmu.2022.908108 |