Color M-Mode Echocardiography for Non-Invasive Assessment of the Intraventricular Pressure in Dogs Before and After Ductus Arteriosus Occlusion: A Retrospective Study

Background Novel non-invasive evaluation of the intraventricular pressure differences and gradients (IVPD and IVPG) by color M-mode echocardiography (CMME) is a promising method in diastolic function evaluation. Patent ductus arteriosus (PDA) is a congenital heart defect which is associated with inc...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in veterinary science Vol. 9; p. 908829
Main Authors: Hirose, Miki, Mandour, Ahmed S., Goya, Seijirow, Hamabe, Lina, Matsuura, Katsuhiro, Yoshida, Tomohiko, Watanabe, Momoko, Shimada, Kazumi, Uemura, Akiko, Takahashi, Ken, Tanaka, Ryou
Format: Journal Article
Language:English
Published: Frontiers Media S.A 12-07-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Novel non-invasive evaluation of the intraventricular pressure differences and gradients (IVPD and IVPG) by color M-mode echocardiography (CMME) is a promising method in diastolic function evaluation. Patent ductus arteriosus (PDA) is a congenital heart defect which is associated with increased preload. The present work provides a clinical trial for the assessment of IVPD and IVPG changes in dogs before and after surgical occlusion of PDA. Materials and Methods A total of 12 client-owned dogs were enrolled in this study. PDA was confirmed using echocardiography, and all dogs underwent PDA occlusion. Conventional echocardiography and CMME were conducted on each patient on the operation day (Pre-PDA) and 48 h after its occlusion (Post-PDA). The total IVPD and total IVPG, as well as segmental intraventricular pressure (basal, mid-to-apical, mid, and apical) were measured from Euler's equation using specific software (MATLAB). Data were analyzed for variability and for the difference between pre- and post-PDA. The effect of PDA occlusion on the measured variables was calculated using biserial ranked correlation (rc). Results There was a significant reduction in end-diastolic volume, fraction shortening, stroke volume, and mitral inflow velocities (early and late) after PDA closure. CMME was feasible in all dogs, and the CMME indices showed moderate variability, except for the apical segment of IVPD and IVPG. After PDA closure, in comparison with the pre-PDA occlusion, there was a significant reduction in total IVPD (2.285 ± 0.374 vs. 1.748 ± 0.436 mmHg; P = 0.014), basal IVPD (1.177 ± 0.538 vs. 0.696 ± 0.144 mmHg; P = 0.012), total IVPG (1.141 ± 0.246 vs. 0.933 ± 0.208 mmHg; P = 0.032), and basal IVPG (0.578 ± 0.199 vs. 0.377 ± 0.113 mmHg; P = 0.001); meanwhile, mid, mid-to-apical, and apical segments of both IVPD and IVPG showed non-significant difference. The magnitude of PDA occlusion on the measured variables was clinically relevant and associated with a large effect size on total and basal IVPD and IVPG (rc > 0.6). Conclusion The current clinical study revealed matched response of IVPD and IVPG to the reduced preload rather than left ventricular relaxation. This result is an initial step in the clinical utility of CMME-derived IVPD and IVPG measurements in the diastolic function evaluation in dogs with PDA that warrants further clinical studies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Haney Samir, Cairo University, Egypt
This article was submitted to Veterinary Imaging, a section of the journal Frontiers in Veterinary Science
These authors have contributed equally to this work
Reviewed by: Carlos Fernando Agudelo, University of Veterinary and Pharmaceutical Sciences Brno, Czechia; Samar Elsharkawy, Cairo University, Egypt
ISSN:2297-1769
2297-1769
DOI:10.3389/fvets.2022.908829