Introduction of a sEMG Sensor System for Autonomous Use by Inexperienced Users

Wearable devices play an increasing role in the rehabilitation of patients with movement disorders. Although information about muscular activation is highly interesting, no approach exists that allows reliable collection of this information when the sensor is applied autonomously by the patient. Thi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 20; no. 24; p. 7348
Main Authors: Romero Avila, Elisa, Junker, Elmar, Disselhorst-Klug, Catherine
Format: Journal Article
Language:English
Published: Switzerland MDPI 21-12-2020
MDPI AG
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wearable devices play an increasing role in the rehabilitation of patients with movement disorders. Although information about muscular activation is highly interesting, no approach exists that allows reliable collection of this information when the sensor is applied autonomously by the patient. This paper aims to demonstrate the proof-of-principle of an innovative sEMG sensor system, which can be used intuitively by patients while detecting their muscular activation with sufficient accuracy. The sEMG sensor system utilizes a multichannel approach based on 16 sEMG leads arranged circularly around the limb. Its design enables a stable contact between the skin surface and the system's dry electrodes, fulfills the SENIAM recommendations regarding the electrode size and inter-electrode distance and facilitates a high temporal resolution. The proof-of-principle was demonstrated by elbow flexion/extension movements of 10 subjects, proving that it has root mean square values and a signal-to-noise ratio comparable to commercial systems based on pre-gelled electrodes. Furthermore, it can be easily placed and removed by patients with reduced arm function and without detailed knowledge about the exact positioning of the sEMG electrodes. With its features, the demonstration of the sEMG sensor system's proof-of-principle positions it as a wearable device that has the potential to monitor muscular activation in home and community settings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s20247348