An efficient flow-shop scheduling algorithm based on a hybrid particle swarm optimization model

In this paper, a new hybrid particle swarm optimization model named HPSO that combines random-key (RK) encoding scheme, individual enhancement (IE) scheme, and particle swarm optimization (PSO) is presented and used to solve the flow-shop scheduling problem (FSSP). The objective of FSSP is to find a...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 36; no. 3; pp. 7027 - 7032
Main Authors: Kuo, I-Hong, Horng, Shi-Jinn, Kao, Tzong-Wann, Lin, Tsung-Lieh, Lee, Cheng-Ling, Terano, Takao, Pan, Yi
Format: Journal Article
Language:English
Published: Elsevier Ltd 01-04-2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a new hybrid particle swarm optimization model named HPSO that combines random-key (RK) encoding scheme, individual enhancement (IE) scheme, and particle swarm optimization (PSO) is presented and used to solve the flow-shop scheduling problem (FSSP). The objective of FSSP is to find an appropriate sequence of jobs in order to minimize makespan. Makespan means the maximum completion time of a sequence of jobs running on the same machines in flow-shops. By the RK encoding scheme, we can exploit the global search ability of PSO thoroughly. By the IE scheme, we can enhance the local search ability of particles. The experimental results show that the solution quality of FSSP based on the proposed HPSO is far better than those based on GA [Lian, Z., Gu, X., & Jiao, B. (2008). A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35, 851–861.] and NPSO [Lian, Z., Gu, X., & Jiao, B. (2008). A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan. Chaos, Solitons and Fractals, 35, 851–861.], respectively.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2008.08.054