Synthesis of eugenol derivative by the ring opening of epoxide eugenol and its analysis through chemical reactivity: a DFT approach

Eugenol, a plant bioactive component, is frequently found in a variety of medicinal plants with well-defined functional attributes. Essential oils containing eugenol were extracted from buds of Eugenia caryophyllata commonly named clove using hydrodistillation. Afterwards, the analysis of the essent...

Full description

Saved in:
Bibliographic Details
Published in:Natural product research Vol. 38; no. 7; pp. 1099 - 1107
Main Authors: Abdou, Achraf, Maaghloud, Fatima Ezzahra, Elmakssoudi, Abdelhakim, Aboulmouhajir, Aziz, Jamal Eddine, Jamal, Dakir, Mohamed
Format: Journal Article
Language:English
Published: England Taylor & Francis 02-04-2024
Taylor & Francis Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eugenol, a plant bioactive component, is frequently found in a variety of medicinal plants with well-defined functional attributes. Essential oils containing eugenol were extracted from buds of Eugenia caryophyllata commonly named clove using hydrodistillation. Afterwards, the analysis of the essential oils using gas chromatography/mass spectrometry (GC/MS) shows that eugenol is the major constituent with 70.14% of it. The alkene group in eugenol was epoxidised using m-chloroperbenzoic acid leading to the synthesis of epoxide eugenol. The epoxide ring was cleaved to vanillyl glycol by mixed the epoxide eugenol with aluminum chloride hydrate in an ethanolic medium. A Density Functional Theory (DFT) study was investigated to understand the reactivity of the epoxide eugenol with the aluminum chloride hydrate. The results obtained from DFT based reactivity descriptors were in good agreement with the experiment results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1478-6419
1478-6427
DOI:10.1080/14786419.2022.2132242