Selenophosphate synthetase. Enzyme properties and catalytic reaction

Selenophosphate synthetase, the product of the selD gene, produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. Isolation of the enzyme and characterization of some of its physical and catalytic properties are described. Magnesium ion and a monovalent...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 269; no. 14; pp. 10597 - 10603
Main Authors: Veres, Z, Kim, I Y, Scholz, T D, Stadtman, T C
Format: Journal Article
Language:English
Published: Bethesda, MD American Society for Biochemistry and Molecular Biology 08-04-1994
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Selenophosphate synthetase, the product of the selD gene, produces the biologically active selenium donor compound, monoselenophosphate, from ATP and selenide. Isolation of the enzyme and characterization of some of its physical and catalytic properties are described. Magnesium ion and a monovalent cation, K+, NH4+, or Rb+, are required for catalytic activity. Polyphosphates and other common nucleotide triphosphates do not replace ATP as substrate. The stoichiometry of the catalytic reaction (Reaction 1) was established using 31P NMR, anaerobic molecular sieve chromatography, and radiochemical labeling procedures. ATP+selenide+H2O-->selenophosphate+Pi+AMP. In the absence of selenide, ATP is converted completely to AMP and orthophosphate upon prolonged incubation with elevated levels of enzyme. AMP is a competitive inhibitor of ATP, Ki = 170 microM, whereas selenophosphate and orthophosphate are weak inhibitors indicating a multistep reaction. Attempts to obtain direct evidence for a postulated enzyme-pyrophosphate intermediate using several experimental approaches are described. No exchange of [14C]AMP with ATP could be detected after the enzyme was freed of traces of contaminating adenylate kinase by chromatography on phenyl-Sepharose.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)34101-7