Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts
Platinum anodes are widely used for metal oxides reduction in LiCl–Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO–Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO–Li2O ceramics were studied in (80 mol.%)LiC...
Saved in:
Published in: | Nuclear engineering and technology Vol. 54; no. 3; pp. 965 - 974 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2022
Elsevier 한국원자력학회 |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Platinum anodes are widely used for metal oxides reduction in LiCl–Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO–Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO–Li2O ceramics were studied in (80 mol.%)LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl–Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl–KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550°С and at 3.04 V and 650оС. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650°С reached about 96%. The anode process on the NiO–Li2O electrode in the LiCl–KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO–Li2O is close to 100%. The NiO–Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2021.08.034 |