Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise

To investigate the kinetics of cell-free DNA (cfDNA) due to exercise, we established a direct real-time PCR for the quantification of cfDNA from unpurified capillary plasma by amplification of a 90- and a 222-bp multilocus L1PA2 sequence. Twenty-six male athletes performed an incremental treadmill t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physiology (1985) Vol. 117; no. 2; pp. 119 - 130
Main Authors: Breitbach, Sarah, Sterzing, Björn, Magallanes, Carlos, Tug, Suzan, Simon, Perikles
Format: Journal Article
Language:English
Published: United States American Physiological Society 15-07-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the kinetics of cell-free DNA (cfDNA) due to exercise, we established a direct real-time PCR for the quantification of cfDNA from unpurified capillary plasma by amplification of a 90- and a 222-bp multilocus L1PA2 sequence. Twenty-six male athletes performed an incremental treadmill test. For cfDNA measurement, capillary samples were collected serially from the fingertip preexercise, during, and several times postexercise. Venous blood was drawn before and immediately after exercise to compare capillary and venous cfDNA values. To elucidate the strongest association of cfDNA accumulations with either cardiorespiratory or metabolic function during exercise, capillary cfDNA values were correlated with standard measures like heart rate, oxygen consumption, or lactate concentrations. The venous cfDNA concentrations were significantly higher compared with the capillary plasma, but in both fractions cfDNA increased 9.8-fold and the values correlated significantly (r = 0.796). During incremental treadmill running, the capillary cfDNA concentrations increased nearly parallel to the lactate values. The values correlated best with heart rate and energy expenditure, followed by oxygen consumption, Borg values, and lactate levels (0.710 ≤ r ≥ 0.808). With this article, we present a sensitive procedure for the direct quantification of cfDNA in unpurified capillary plasma instead of purified venous plasma. Further studies should investigate the differences between capillary and venous cfDNA that might mirror different physiological mechanisms. Enhanced cardiorespiratory function during exercise might lead to the accumulation of cfDNA via the release of stress hormones that already increase at intensities below the anaerobic threshold. Furthermore, cfDNA might be released by neutrophil extracellular traps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8750-7587
1522-1601
DOI:10.1152/japplphysiol.00002.2014