Protective effect of Chresta martii extract on the zymosan-induced temporomandibular joint arthritis in rats
Chresta martii is broadly used by folk medicine due to its anti-inflammatory effects, but there is a lack of preclinical data on its pharmacological mechanisms. This study investigated the efficacy of Chresta martii ethanolic extract (CEE) in the zymosan-induced temporomandibular joint arthritis (TM...
Saved in:
Published in: | Journal of oral biology and craniofacial research (Amsterdam) Vol. 10; no. 3; pp. 276 - 280 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier B.V
01-07-2020
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chresta martii is broadly used by folk medicine due to its anti-inflammatory effects, but there is a lack of preclinical data on its pharmacological mechanisms. This study investigated the efficacy of Chresta martii ethanolic extract (CEE) in the zymosan-induced temporomandibular joint arthritis (TMJ) and evaluated the possible role of TNF-α, nitric oxide (NO), and heme oxygenase-1 (HO-1).
Male Wistar rats (160–220 g) were pre-treated with CEE (100, 200 or 400 mg/kg; v.o) 1 h before zymosan injection (2 mg; i.art). Mechanical hypernociception (g) was assessed 4 h later. The trigeminal ganglion was collected for TNF-α quantification (ELISA), total cell count and myeloperoxidase activity (MPO) were assayed in the synovial lavage 6 h after arthritis induction. Additionally, animals were pre-treated with L-NAME (30 mg/kg; i.p.) or ZnPP-IX (3 mg/kg, s.c.) to assess the involvement of NO and HO-1, respectively.
CEE 400 mg/kg (v.o) increased (p < 0.05) hypernociception threshold, reduced the cell counts and MPO activity in the synovial lavage, as well as decreased TNF-α levels in the trigeminal ganglion. ZnPP-IX abolished the analgesic effect of CEE, but not L-NAME.
The anti-inflammatory and antinociceptive effects of CEE depended on the HO-1 pathway integrity and TNF-α suppression. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2212-4268 2212-4276 |
DOI: | 10.1016/j.jobcr.2020.05.005 |