A Combination of Low-Intensity Pulsed Ultrasound and Nanohydroxyapatite Concordantly Enhances Osteogenesis of Adipose-Derived Stem Cells From Buccal Fat Pad
The osteogenic induction of adipose-derived stem cells (ADSCs) has been regarded as an important step in bone tissue engineering. In the present study, we focused on the buccal fat pad (BFP) as a source of adipose tissue, since BFPs are encapsulated by adipose tissue and are often coextirpated durin...
Saved in:
Published in: | Cell medicine Vol. 7; no. 3; pp. 123 - 131 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Cognizant Communication Corporation
01-04-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The osteogenic induction of adipose-derived stem cells (ADSCs) has been regarded as an important step in bone tissue engineering. In the present study, we focused on the buccal fat pad (BFP) as a source of adipose tissue, since BFPs are encapsulated by adipose tissue and are often coextirpated during oral surgery. Low-intensity pulsed ultrasound (LIPUS) is effective in the treatment of fractures, and nanohydroxyapatite (NHA) is known as a bone substitute material. Here we investigated the synergistic effects of LIPUS and NHA in the osteogenesis of ADSCs. A combination of LIPUS irritation and NHA as a scaffold significantly increased the osteogenic differentiation of ADSCs in vitro, and in our in vivo study in which ADSCs were transplanted into calvarial bone defects of nude mice, the combinational effect greatly enhanced the new bone formation of the margin of the defects. These results demonstrate that synergistic effects of LIPUS and NHA are capable of effectively inducing the differentiation of ADSCs into osteoblasts, and they suggest a novel therapeutic strategy for bone regeneration by the autotransplantation of ADSCs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Received February 12, 2014; final acceptance April 14, 2015. Online prepub date: April 22, 2015. |
ISSN: | 2155-1790 2155-1790 |
DOI: | 10.3727/215517915x688057 |