High efficiency degradation of tetrahydrofuran (THF) using a membrane bioreactor: identification of THF-degrading cultures of Pseudonocardia sp. strain M1 and Rhodococcus ruber isolate M2

A mixed microbial culture capable of growing aerobically on tetrahydrofuran (THF) as a sole carbon and energy source was used as the inoculum in a 10 l working volume membrane bioreactor. Following start-up, the reactor was operated in batch mode for 24 h and then switched to continuous feed with 10...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology Vol. 30; no. 12; pp. 705 - 714
Main Authors: Daye, K J, Groff, J C, Kirpekar, A C, Mazumder, R
Format: Journal Article
Language:English
Published: Germany Oxford University Press 01-12-2003
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mixed microbial culture capable of growing aerobically on tetrahydrofuran (THF) as a sole carbon and energy source was used as the inoculum in a 10 l working volume membrane bioreactor. Following start-up, the reactor was operated in batch mode for 24 h and then switched to continuous feed with 100% biomass recycle. On average, greater than 96% of THF fed to the reactor was removed during the 8-month study. THF loading rates ranged from 0.62 to 9.07 g l(-1) day(-1) with a hydraulic retention time of 24 h. THF concentrations as high as 800 mg/l were tolerated by the culture. Biomass production averaged 0.28 kg total suspended solids/kg chemical oxygen demand removed, i.e., comparable to a conventional wastewater treatment process. Periodic batch wasting resulted in a solids retention time of 7-14 days. Reactor biomass typically ranged from 4 to 10 g/l volatile suspended solids and the effluent contained no solids. Pure THF-degrading cultures were isolated from the mixed culture based on morphological characteristics, Gram-staining and THF degradation. Based on 16S rDNA analysis the isolates were identified as Pseudonocardia sp. M1 and Rhodococcus ruber M2.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-003-0103-8