Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression Through Canonical Signaling
Wnt signaling regulates brain development and synapse maturation; however, the precise molecular mechanism remains elusive. Here, we report that Wnt-7a stimulates dendritic spine morphogenesis in the hippocampus via glycogen synthase kinase-3 β (GSK-3β) inhibition, triggering β-catenin/T cell factor...
Saved in:
Published in: | Molecular neurobiology Vol. 56; no. 3; pp. 1870 - 1882 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-03-2019
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wnt signaling regulates brain development and synapse maturation; however, the precise molecular mechanism remains elusive. Here, we report that Wnt-7a stimulates dendritic spine morphogenesis in the hippocampus via glycogen synthase kinase-3 β (GSK-3β) inhibition, triggering β-catenin/T cell factor/lymphoid enhancer factor (TCF/LEF)-dependent gene transcription and promoting postsynaptic density-95 (PSD-95) protein expression. In addition, wild-type mice treated with an inhibitor of β-catenin/TCF/LEF-mediated transcription showed a reduction in spatial memory acquisition accompanied by a reduction in PSD-95 and decreases in spine density measured by Golgi staining, suggesting that PSD-95 is a novel Wnt target gene. Together, our data strongly demonstrate that Wnt-dependent target gene transcription is essential to hippocampal synaptic plasticity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0893-7648 1559-1182 |
DOI: | 10.1007/s12035-018-1162-1 |