Spatial and temporal coherence properties of single free-electron laser pulses
The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm(2) were measured. A transverse...
Saved in:
Published in: | Optics express Vol. 20; no. 16; pp. 17480 - 17495 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
30-07-2012
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The experimental characterization of the spatial and temporal coherence properties of the free-electron laser in Hamburg (FLASH) at a wavelength of 8.0 nm is presented. Double pinhole diffraction patterns of single femtosecond pulses focused to a size of about 10×10 μm(2) were measured. A transverse coherence length of 6.2 ± 0.9 μm in the horizontal and 8.7 ± 1.0 μm in the vertical direction was determined from the most coherent pulses. Using a split and delay unit the coherence time of the pulses produced in the same operation conditions of FLASH was measured to be 1.75 ± 0.01 fs. From our experiment we estimated the degeneracy parameter of the FLASH beam to be on the order of 10(10) to 10(11), which exceeds the values of this parameter at any other source in the same energy range by many orders of magnitude. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.20.017480 |