An Alternative Splice Form of Mdm2 Induces p53-independent Cell Growth and Tumorigenesis

The Mdm2 gene is amplified in approximately one-third of human sarcomas and overexpressed in a variety of other human cancers. Mdm2 functions as an oncoprotein, in part, by acting as a negative regulator of the p53 tumor suppressor protein. Multiple spliced forms of Mdm2 transcripts have been observ...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 279; no. 6; pp. 4877 - 4886
Main Authors: Steinman, Heather A., Burstein, Ezra, Lengner, Christopher, Gosselin, Joseph, Pihan, German, Duckett, Colin S., Jones, Stephen N.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 06-02-2004
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Mdm2 gene is amplified in approximately one-third of human sarcomas and overexpressed in a variety of other human cancers. Mdm2 functions as an oncoprotein, in part, by acting as a negative regulator of the p53 tumor suppressor protein. Multiple spliced forms of Mdm2 transcripts have been observed in human tumors; however, the contribution of these variant transcripts to tumorigenesis is unknown. In this report, we isolate alternative splice forms of Mdm2 transcripts from sarcomas that spontaneously arise in Mdm2-overexpressing mice, including Mdm2-b, the splice form most commonly observed in human cancers. Transduction of Mdm2-b into a variety of cell types reveals that Mdm2-b promotes p53-independent cell growth, inhibits apoptosis, and up-regulates the RelA subunit of NFκB. Furthermore, expression of Mdm2-b induces tumor formation in transgenic mice. These results identify a p53-independent role for Mdm2 and determine that an alternate spliced form of Mdm2 can contribute to formation of cancer via a p53-independent mechanism. These findings also provide a rationale for the poorer prognosis of those patients presenting with tumors harboring multiple Mdm2 transcripts.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M305966200