Efficiency enhancement of i-PERC solar cells by implementation of a laser doped selective emitter
In this work, we present the incorporation of a laser doped selective emitter into the i-PERC platform at Imec using large area magnetically confined boron-doped Czochralski grown silicon wafers. Cells were fabricated with self-aligned plated n-type contacts with a comparison between the use of a ho...
Saved in:
Published in: | Solar energy materials and solar cells Vol. 134; pp. 89 - 98 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier B.V
01-03-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we present the incorporation of a laser doped selective emitter into the i-PERC platform at Imec using large area magnetically confined boron-doped Czochralski grown silicon wafers. Cells were fabricated with self-aligned plated n-type contacts with a comparison between the use of a homogenous emitter with contact openings formed by picosecond laser ablation and a selective emitter formed by laser doping with a mode-locked UV laser using various processing speeds. Without modification to other processes in the i-PERC platform, improvements in efficiency of approximately 0.4% absolute were obtained with the inclusion of the selective emitter structure through improvements in open circuit voltage, fill factor and reduced series resistance. This resulted in peak efficiencies of 20.5% using a processing speed for laser doping of 5m/s.
•0.4% absolute efficiency enhancement by the incorporation of a laser doped selective emitter into a PERC cell structure.•Peak efficiency of 20.5% obtained.•Faster processing speeds (>2m/s) observed to cause less bulk damage than slower processing speeds. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2014.11.028 |