Hydrogen sulfide upregulates cyclooxygenase-2 and prostaglandin E metabolite in sepsis-evoked acute lung injury via transient receptor potential vanilloid type 1 channel activation

Hydrogen sulfide (H(2)S) has been shown to promote transient receptor potential vanilloid type 1 (TRPV1)-mediated neurogenic inflammation in sepsis and its associated multiple organ failure, including acute lung injury (ALI). Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)/PGE(2) pa...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) Vol. 187; no. 9; pp. 4778 - 4787
Main Authors: Ang, Seah-Fang, Sio, Selena W S, Moochhala, Shabbir M, MacAry, Paul A, Bhatia, Madhav
Format: Journal Article
Language:English
Published: United States 01-11-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen sulfide (H(2)S) has been shown to promote transient receptor potential vanilloid type 1 (TRPV1)-mediated neurogenic inflammation in sepsis and its associated multiple organ failure, including acute lung injury (ALI). Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)/PGE(2) pathway plays an important role in augmenting inflammatory immune response in sepsis and respiratory diseases. However, the interactions among H(2)S, COX-2, and PGE(2) in inciting sepsis-evoked ALI remain unknown. Therefore, the aim of this study was to investigate whether H(2)S would upregulate COX-2 and work in conjunction with it to instigate ALI in a murine model of polymicrobial sepsis. Polymicrobial sepsis was induced by cecal ligation and puncture (CLP) in male Swiss mice. dl-propargylglycine, an inhibitor of H(2)S formation, was administrated 1 h before or 1 h after CLP, whereas sodium hydrosulfide, an H(2)S donor, was given during CLP. Mice were treated with TRPV1 antagonist capsazepine 30 min before CLP, followed by assessment of lung COX-2 and PGE(2) metabolite (PGEM) levels. Additionally, septic mice were administrated with parecoxib, a selective COX-2 inhibitor, 20 min post-CLP and subjected to ALI and survival analysis. H(2)S augmented COX-2 and PGEM production in sepsis-evoked ALI by a TRPV1 channel-dependent mechanism. COX-2 inhibition with parecoxib attenuated H(2)S-augmented lung PGEM production, neutrophil infiltration, edema, proinflammatory cytokines, chemokines, and adhesion molecules levels, restored lung histoarchitecture, and protected against CLP-induced lethality. The strong anti-inflammatory and antiseptic actions of selective COX-2 inhibitor may provide a potential therapeutic approach for the management of sepsis and sepsis-associated ALI.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1101559