Injury-induced vesiculation and membrane redistribution in squid giant axon
Injury of isolated squid giant axons in sea water by cutting or stretching initiates the following unreported processes: (i) vesiculation in the subaxolemmal region extending along the axon several mm from the site of injury, followed by (ii) vesicular fusions that result in the formation of large v...
Saved in:
Published in: | Biochimica et biophysica acta Vol. 1023; no. 3; p. 421 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
30-04-1990
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Injury of isolated squid giant axons in sea water by cutting or stretching initiates the following unreported processes: (i) vesiculation in the subaxolemmal region extending along the axon several mm from the site of injury, followed by (ii) vesicular fusions that result in the formation of large vesicles (20-50 micron diameter), 'axosomes', and finally (iii) axosomal migration to and accumulation at the injury site. Some axosomes emerge from a cut end, attaining sizes up to 250 microns in diameter. Axosomes did not form after axonal injury unless divalent cations (Ca2+ or Mg2+) were present (10mM) in the external solution. The requirement for Ca2+ and the action of other ions are similar to that for cut-end cytoskeletal constriction in transected squid axons (Gallant, P.E. (1988) J. Neurosci. 8, 1479-1484) and for electrical sealing in transected axons of the cockroach (Yawo, H. and Kuno, M. (1985) J. Neurosci. 5, 1626-1632). Axosomes probably consist of membrane from different sources (e.g., axolemma, organelles and Schwann cells); however, localization of axosomal formation to the inner region of the axolemma and the formation dependence on divalent cations suggest principal involvement of cisternae of endoplasmic reticulum. Patch clamp of excised patches from axosomes liberated spontaneously from cut ends of transected axons showed a 12-pS K+ channel and gave indications of other channel types. Injury-induced vesiculation and membrane redistribution seem to be fundamental processes in the short-term (minutes to hours) that precede axonal degeneration or repair and regeneration. Axosomal formation provides a membrane preparation for the study of ion channels and other membrane processes from inaccessible organelles. |
---|---|
ISSN: | 0006-3002 |
DOI: | 10.1016/0005-2736(90)90135-B |