Understanding sigma-phase precipitation in a stabilized austenitic stainless steel (316Nb) through complementary CALPHAD-based and experimental investigations
Sigma-phase precipitation in a 316Nb “stabilized” austenitic stainless steel was studied through complementary CALPHAD-based and dedicated experimental investigations. Thermokinetic calculations performed using Thermo-Calc (with the DICTRA module) and MatCalc software showed that the sigma phase (σ)...
Saved in:
Published in: | Acta materialia Vol. 79; pp. 16 - 29 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
15-10-2014
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sigma-phase precipitation in a 316Nb “stabilized” austenitic stainless steel was studied through complementary CALPHAD-based and dedicated experimental investigations. Thermokinetic calculations performed using Thermo-Calc (with the DICTRA module) and MatCalc software showed that the sigma phase (σ) precipitated directly at γ-austenite grain boundaries (GB) via a common solid-state reaction when carbon and nitrogen contents fell below a critical threshold. Residual δ ferrite was found to be more susceptible to σ-phase precipitation; this type of precipitation occurred via two mechanisms that depended on the concentration profiles of δ-ferrite stabilizing elements induced by previous thermomechanical processing: direct σ precipitation (δ→σ) along the periphery of δ islands followed by a eutectoid decomposition (δ→σ+γ2) within these islands. Both simulations and experiments revealed that the σ phase at γ GB contained higher amounts of Mo and Ni, while σ within δ ferrite possessed higher contents of Fe and Cr. Finally, the simulated time–temperature–precipitation diagrams for the σ phase in residual δ ferrite were found to be in very good agreement with the experimental ones and comparable to those observed in duplex stainless steels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2014.06.066 |