Uniform binding and negative catalysis at the origin of enzymes

Enzymes are well known for their catalytic abilities, some even reaching “catalytic perfection” in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 31; no. 8; pp. e4381 - n/a
Main Authors: Noor, Elad, Flamholz, Avi I., Jayaraman, Vijay, Ross, Brian L., Cohen, Yair, Patrick, Wayne M., Gruic‐Sovulj, Ita, Tawfik, Dan S.
Format: Journal Article
Language:English
Published: Hoboken, USA John Wiley & Sons, Inc 01-08-2022
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enzymes are well known for their catalytic abilities, some even reaching “catalytic perfection” in the sense that the reaction they catalyze has reached the physical bound of the diffusion rate. However, our growing understanding of enzyme superfamilies has revealed that only some share a catalytic chemistry while others share a substrate‐handle binding motif, for example, for a particular phosphate group. This suggests that some families emerged through a “substrate‐handle‐binding‐first” mechanism (“binding‐first” for brevity) instead of “chemistry‐first” and we are, therefore, left to wonder what the role of non‐catalytic binders might have been during enzyme evolution. In the last of their eight seminal, back‐to‐back articles from 1976, John Albery and Jeremy Knowles addressed the question of enzyme evolution by arguing that the simplest mode of enzyme evolution is what they defined as “uniform binding” (parallel stabilization of all enzyme‐bound states to the same degree). Indeed, we show that a uniform‐binding proto‐catalyst can accelerate a reaction, but only when catalysis is already present, that is, when the transition state is already stabilized to some degree. Thus, we sought an alternative explanation for the cases where substrate‐handle‐binding preceded any involvement of a catalyst. We find that evolutionary starting points that exhibit negative catalysis can redirect the reaction's course to a preferred product without need for rate acceleration or product release; that is, if they do not stabilize, or even destabilize, the transition state corresponding to an undesired product. Such a mechanism might explain the emergence of “binding‐first” enzyme families like the aldolase superfamily.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Review Editor: John Kuriyan
Elad Noor, Avi I. Flamholz, Vijay Jayaraman, and Brian L. Ross contributed equally to this study.
Funding information Volkswagen Foundation, Grant/Award Number: Grant 94747
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.4381