Maternal antibrain antibodies in autism
Abstract Autism is a neurodevelopmental disorder of prenatal onset that is behaviorally defined. There is increasing evidence for systemic and neuroimmune mechanisms in children with autism. Although genetic factors are important, atypical prenatal maternal immune responses may also be linked to the...
Saved in:
Published in: | Brain, behavior, and immunity Vol. 21; no. 3; pp. 351 - 357 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
01-03-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Autism is a neurodevelopmental disorder of prenatal onset that is behaviorally defined. There is increasing evidence for systemic and neuroimmune mechanisms in children with autism. Although genetic factors are important, atypical prenatal maternal immune responses may also be linked to the pathogenesis of autism. We tested serum reactivity in 11 mothers and their autistic children, maternal controls, and several groups of control children, to prenatal, postnatal, and adult rat brain proteins, by immunoblotting. Similar patterns of reactivity to prenatal (gestational day 18), but not postnatal (day 8) or adult rat brain proteins were identified in autistic children, their mothers, and children with other neurodevelopmental disorders, and differed from mothers of normal children, normal siblings of children with autism and normal child controls. Specific patterns of antibody reactivity were present in sera from the autism mothers, from 2 to 18 years after the birth of their affected children and were unrelated to birth order. Immunoblotting using specific antigens for myelin basic protein (MBP) and glial acidic fibrillary protein (GFAP) suggests that these proteins were not targets of the maternal antibodies. The identification of specific serum antibodies in mothers of children with autism that recognize prenatally expressed brain antigens suggests that these autoantibodies could cross the placenta and alter fetal brain development. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0889-1591 1090-2139 |
DOI: | 10.1016/j.bbi.2006.08.005 |