IMPACT OF TYPHOONS ON THE OCEAN IN THE PACIFIC

Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC,...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the American Meteorological Society Vol. 95; no. 9; pp. 1405 - 1418
Main Authors: D’Asaro, E.A., Black, P. G., Centurioni, L. R., Chang, Y.-T., Chen, S. S., Foster, R. C., Graber, H. C., Harr, P., Hormann, V., Lien, R.-C., Lin, I.-I., Sanford, T. B., Tang, T.-Y., Wu, C.-C.
Format: Journal Article
Language:English
Published: Boston American Meteorological Society 01-09-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-0007
1520-0477
DOI:10.1175/bams-d-12-00104.1